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The unfolding problem

Any differential cross section measurement is affected by the finite
resolution of the particle detectors

This causes the observed spectrum of events to be “smeared” or
“blurred” with respect to the true one

The unfolding problem is to estimate the true spectrum using the
smeared observations

Ill-posed inverse problem with major methodological challenges
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Examples of unfolding in LHC data analysis
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Problem formulation

Let f be the true, particle-level spectrum and g the smeared, detector-level
spectrum

Denote the true space by E and the smeared space by F (both taken
to be 1D intervals on the real line)
Mathematically f and g are the intensity functions of the underlying
Poisson point process

The two spectra are related by

g(t) =

∫
E

k(t, s)f (s) ds,

where the smearing kernel k represents the response of the detector and is
given by

k(t, s) = p(Y = t|X = s,X observed)P(X observed|X = s),

where X is a true event and Y the corresponding smeared event

Task: Infer the true spectrum f given smeared observations from g
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Discretization

Problem primarily discretized using histograms (splines are also sometimes used)
Let {Ei}pi=1 and {Fi}ni=1 be binnings of the true space E and the smeared space F
Smeared histogram y = [y1, . . . , yn]T with mean

µ =

[∫
F1

g(t) dt, . . . ,

∫
Fn

g(t) dt

]T
Quantity of interest:

λ =

[∫
E1

f (s) ds, . . . ,

∫
Ep

f (s) ds

]T
The mean histograms are related by µ = Kλ, where the elements of the response
matrix K are given by

Ki,j =

∫
Fi

∫
Ej
k(t, s)f (s) ds dt∫
Ej
f (s) ds

= P(smeared event in bin i | true event in bin j)

The discretized statistical model becomes

y ∼ Poisson(Kλ),

where K is an ill-conditioned matrix
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Demonstration of ill-posedness
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Demonstration of ill-posedness
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MSE(θ̂) = E((θ̂ − θ)2) = [bias(θ̂)]2 + var(θ̂)

Regularization: bias ↑, variance ↓ ⇒ MSE ↓
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Demonstration of ill-posedness
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Current methodology

Two main approaches to unfolding:

1 Tikhonov regularization (Höcker and Kartvelishvili, 1996; Schmitt, 2012)

2 Expectation-maximization iteration with early stopping (D’Agostini, 1995;
Richardson, 1972; Lucy, 1974; Shepp and Vardi, 1982; Lange and Carson,
1984; Vardi et al., 1985)
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Tikhonov regularization

Tikhonov regularization estimates λ by solving:

min
λ∈Rp

(y −Kλ)TĈ−1(y −Kλ) + δP(λ)

The first term as a Gaussian approximation to the Poisson log-likelihood
The second term penalizes physically implausible solutions
Common penalty terms:

Norm: P(λ) = ‖λ‖2

Curvature: P(λ) = ‖Lλ‖2, where L is a discretized 2nd derivative operator
SVD unfolding (Höcker and Kartvelishvili, 1996):

P(λ) =

∥∥∥∥∥∥∥∥∥L


λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥

2

,

where λMC is a MC prediction for λ
TUnfold1 (Schmitt, 2012): P(λ) = ‖L(λ− λMC)‖2

1TUnfold implements also more general penalty terms
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D’Agostini iteration

Starting from some initial guess λ(0) > 0, iterate

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

Regularization by stopping the iteration before convergence:

λ̂ = λ(K) for some small number of iterations K
I.e., bias the solution towards λ(0)

Regularization strength controlled by the choice of K

In RooUnfold (Adye, 2011), λ(0) = λMC
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D’Agostini iteration

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

This iteration has been discovered in various fields, including optics
(Richardson, 1972), astronomy (Lucy, 1974) and tomography (Shepp
and Vardi, 1982; Lange and Carson, 1984; Vardi et al., 1985)

In particle physics, it was popularized by D’Agostini (1995) who
called it “Bayesian” unfolding

But: This is in fact an expectation-maximization (EM) iteration
(Dempster et al., 1977) for finding the maximum likelihood estimator
of λ in the Poisson regression problem y ∼ Poisson(Kλ)

As k →∞, λ(k) → λ̂MLE (Vardi et al., 1985)

This is a fully frequentist technique for finding the (regularized) MLE

The name “Bayesian” is an unfortunate misnomer
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D’Agostini demo, k = 0
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D’Agostini demo, k = 100
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D’Agostini demo, k = 10000
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D’Agostini demo, k = 100000
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Choice of the regularization strength

A key issue in unfolding concerns the choice of the regularization
strength (δ in Tikhonov, K in D’Agostini)

Many data-driven methods have been proposed:

Cross-validation (Stone, 1974)
L-curve (Hansen, 1992)
Empirical Bayes estimation (Kuusela and Panaretos, 2015)
Goodness-of-fit test in the smeared space (Veklerov and Llacer, 1987)
Akaike information criterion (Volobouev, 2015)
Minimization of a global correlation coefficient (Schmitt, 2012)
...

Limited experience about the relative merits of these methods in
typical unfolding problems

Some evidence that empirical Bayes tends to be more stable than
cross-validation (Kuusela, 2016; Wood, 2011)

Notice that all these are aiming to achieve optimal point estimation

Not necessarily optimal for uncertainty quantification!
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Some remarks based on experience from the LHC

One should think carefully if unfolding is really needed

E.g., if the goal of the experiment is to measure just a few 1-dimensional
parameters, then one should perform the fit in the smeared space (as
opposed to inferring the quantities from the regularized unfolded spectrum)
What about smearing the theory instead of unfolding the data?
(Complicated by systematics in the response matrix)
Unfolding can be useful for comparison of experiments, propagation to
further analyses, tuning of MC generators, exploratory data analysis,...

One should analyze carefully if regularization is necessary

If there is little smearing (response matrix almost diagonal), then the MLE
obtained by running D’Agostini until convergence will do the job2

Some insight can be obtained by studying the condition number of K
One must not rely on software defaults for the regularization strength

The unfolded solution is very sensitive to this choice and the optimal
choice is very problem dependent
In particular, the default 4 iterations for D’Agostini in RooUnfold is just
an arbitrary choice and does not guarantee a good solution

2The matrix inverse λ̂ = K−1y also gives the MLE provided that K is invertible and λ̂ ≥ 0
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Some remarks based on experience from the LHC

The standard methods (at least as implemented in RooUnfold)
regularize by biasing the solution towards the MC prediction λMC

Danger of producing over-optimistic results, as too strong
regularization will always make the unfolded histogram match the MC,
whether the MC is correct or not
Safer to use MC-independent regularization (possible in TUnfold)

Uncertainty quantification (i.e., providing confidence intervals) in the
unfolded space is a very delicate matter

When regularization is used, the variance alone may not be a good
measure of uncertainty because it ignores the bias
But the bias is needed to regularize the problem...
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Uncertainty quantification in unfolding

Aim: Find random intervals
[
λi (y), λi (y)

]
, i = 1, . . . , p, with coverage

probability 1− α:

Pf
(
λi ∈

[
λi (y), λi (y)

])
≥ 1− α, ∀f ∈ V

Current methods quantify the uncertainty using the binwise variance
(estimated using either error propagation or resampling):

[
λi , λi

]
=

[
λ̂i − z1−α/2

√
v̂ar
(
λ̂i
)
, λ̂i + z1−α/2

√
v̂ar
(
λ̂i
)]

But: These intervals may suffer from significant undercoverage since
they ignore the regularization bias
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Undercoverage of existing methods (Kuusela, 2016)
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Undercoverage of existing methods (Kuusela, 2016)
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Towards improved uncertainty quantification

We have seen that standard UQ techniques can suffer from severe
undercoverage in realistic unfolding scenarios.

In the reminder of this talk, I will describe two complementary ways of
obtaining improved unfolded uncertainty quantification:

1 Debiased confidence intervals for smooth spectra
(Kuusela and Panaretos, 2015; Kuusela, 2016)

2 Shape-constrained confidence intervals for steeply falling spectra
(Kuusela and Stark, 2017; Kuusela, 2016)
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Debiased uncertainty quantification for smooth spectra

Joint work with Victor M. Panaretos (EPFL)
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Point estimation demonstration
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UQ hampered by the bias
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Debiasing by undersmoothing

Let β̂ be the unfolded point estimator depending on the
regularization strength δ (large δ ↔ strong regularization)

A trivial way of debiasing β̂ is to undersmooth (Hall, 1992) by
choosing δ to be smaller than the value that would lead to optimal
point estimation performance

The variability of the debiased point estimator is then used to
construct confidence intervals

This leads to major improvements in coverage at the expense of
somewhat longer confidence intervals

However: One can obtain even more powerful inferences by employing
iterative bias-corrections
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Iterative bias-correction

By definition, the bias of β̂ is given by bias(β̂) = Eβ(β̂)− β

Denote the observed value of β̂ by β̂(0)

Plug-in estimate of the bias: b̂ias
(0)

(β̂) = Eβ̂(0)(β̂)− β̂(0)

Bias-corrected point estimate: β̂(1) = β̂(0) − b̂ias
(0)

(β̂)

Repeat this iteratively:

Iterative bias-correction (Kuusela and Panaretos, 2015)

1 Estimate the bias: b̂ias
(t)

(β̂) = Eβ̂(t)(β̂)− β̂(t)

2 Compute the bias-corrected estimate: β̂(t+1) = β̂(0) − b̂ias
(t)

(β̂)
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Confidence intervals from the bias-corrected estimator

Let β̂BC be the bias-corrected point estimator obtained after NBC

bias-correction iterations

The bias-corrected unfolded spectrum is f̂BC(s) =
∑p

j=1 β̂BC,jBj(s)

We quantify the uncertainty of f (s) using the variability of f̂BC(s)

Percentile intervals (double bootstrap):[
f̂ ∗BC,α/2(s), f̂ ∗BC,1−α/2(s)

]
Gaussian intervals:[

f̂BC(s)− z1−α/2

√
v̂ar
(
f̂BC(s)

)
, f̂BC(s) + z1−α/2

√
v̂ar
(
f̂BC(s)

)]
Percentile intervals take into account the (potential) asymmetry of
the sampling distribution of f̂BC(s)
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Effect of bias-correction on coverage
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Effect of bias-correction on interval length
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Data-driven debiased confidence intervals

⇒ Choose the amount of debiasing to calibrate 1− α intervals to have

coverage 1− α− ε

[See Kuusela (2016) for details.]
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Figure: Gaussian intervals, 95 % nominal coverage, 94 % target coverage
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Coverage study

Noise level Method Coverage at s = 0 Mean length

σ = 0.005 BC (data) 0.932 (0.915, 0.947) 0.079 (0.077, 0.081)
BC (oracle) 0.937 (0.920, 0.951) 0.064 (0.064, 0.064)
US (data) 0.933 (0.916, 0.948) 0.091 (0.087, 0.095)
US (oracle) 0.949 (0.933, 0.962) 0.070 (0.070, 0.070)
MMLE 0.478 (0.447, 0.509) 0.030 (0.030, 0.030)
MISE 0.359 (0.329, 0.390) 0.028
Unregularized 0.952 (0.937, 0.964) 40316

BC = iterative bias-correction
US = undersmoothing
MMLE = choose δ to maximize the marginal likelihood

MISE = choose δ to minimize the mean integrated squared error

Similar conclusions hold for:

Different noise levels / sample sizes

Different choices of the true spectrum f

Gaussian and Laplacian smearing kernels
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Shape-constrained uncertainty quantification for steeply
falling spectra

Joint work with Philip B. Stark (UC Berkeley)
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Shape-constrained unfolding

We present a technique for forming confidence intervals for λ that
have guaranteed simultaneous frequentist finite-sample coverage,
provided that f satisfies simple, physically justified shape constraints.

The shape constraints (positivity, monotonicity and convexity) are sat-
isfied in the important and common class of unfolding problems with
steeply falling particle spectra.

Examples from the LHC include the differential cross sections of:

Jets (CMS Collaboration, 2013a)

Top quark pairs (CMS Collaboration, 2013b)

W boson (ATLAS Collaboration, 2012)

Higgs boson (CMS Collaboration, 2016)

...
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Regularization using shape constraints
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Regularization using shape constraints
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Strict bounds confidence intervals (Stark, 1992)

Rn

Smeared space

V

True space

yΞ

D = K−1(Ξ)
C

f

K

µ

R

Hk

λk λkλk

λk = Hk f =
∫
Ek
f (s) ds, λk = min

f ∈C∩D
Hk f , λk = max

f ∈C∩D
Hk f

Pf (µ ∈ Ξ) ≥ 1− α ⇒ Pf (f ∈ D) ≥ 1− α
⇒ Pf (f ∈ C ∩ D) ≥ 1− α
⇒ Pf (λ ∈ [λ1, λ1]× · · · × [λp, λp]) ≥ 1− α
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Demonstration: Inclusive jet pT spectrum

We demonstrate shape-constrained unfolding using the inclusive jet
transverse momentum spectrum

Let the true spectrum be (CMS Collaboration, 2011)

f (pT) = LN0

( pT
GeV

)−α(
1− 2√

s
pT

)β
e−γ/pT ,

with L = 5.1 fb−1,
√
s = 7000 GeV,N0 = 1017 fb/GeV, γ = 10 GeV,

α = 5 and β = 10

We generate the smeared data by convolving this with the calorimeter
resolution N (0, σ(pT)2), where

σ(pT) = pT

√
N2

p2
T

+
S2

pT
+ C 2, N = 1 GeV, S = 1 GeV1/2,C = 0.05
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Demonstration: Inclusive jet pT spectrum
(a) Inclusive jet p

T
 spectrum, linear scale
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Figure: Shape-constrained unfolded confidence intervals for the inclusive
jet pT spectrum with guaranteed conservative 95 % simultaneous coverage.
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Demonstration: Inclusive jet pT spectrum
(b) Inclusive jet p

T
 spectrum, log scale
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Figure: Shape-constrained unfolded confidence intervals for the inclusive
jet pT spectrum with guaranteed conservative 95 % simultaneous coverage.
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Summary and conclusions

Ill-posedness makes unfolding a very complex statistical problem

Proper choice of the regularization strength is crucial
A choice that is optimal for point estimation might not be optimal for
uncertainty quantification

Statistical uncertainties from standard techniques can be unreliable
Uncertainties can be improved by debiasing (undersmoothing or iterative
bias-correction) or by imposing qualitative shape constraints

Many open issues remain:
How to handle systematic uncertainties?
How to properly compare, combine and propagate unfolded results?

For more details, simulations and discussion see:
M. Kuusela and V. M. Panaretos, Statistical unfolding of elementary particle spectra:
Empirical Bayes estimation and bias-corrected uncertainty quantification, The Annals
of Applied Statistics, 9(3):1671–1705, 2015.

M. Kuusela and P. B. Stark, Shape-constrained uncertainty quantification in unfolding
steeply falling elementary particle spectra, arXiv:1512.00905v3 [stat.AP], under minor
revision for The Annals of Applied Statistics, 2017.

M. Kuusela. Uncertainty quantification in unfolding elementary particle spectra at the
Large Hadron Collider. PhD thesis, EPFL, 2016, https://infoscience.epfl.ch/
record/220015.
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